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ever seen at any vo'tage. That breakdown within the
clectrode system actually occurred was evident in many
cases by dircet visual observation, although the precise
location of & given discharge could seldom be

. determined.
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[rom the data given herein it seems reasonable to
conclude that the initiating mechanism of high-voltage
clectrical breakdown in vacwo is not a process whereby
charged particles reproduce themselves by a series of
secondary chain reactions ‘involving electrons striking
the anode, with an efliciency which depends continu-
ously on voltage and which rises to unity at breakdown.
Note that no direct statement can be made about chain
reactions not involving electrons, as, for instance, a
positive ion-negative ion reaction, for which in one case
over-all efficiencies as high as one percent have been

GILV-JJ57-0276

IN DISCHARGES

observed.” Aside from the latter type of reaction, t1¢
mechanisms left as possibilities appear to be tho.e
triggered by random events originating within or
without the gap, such as electrostatically detached
clumps,® excitation from some external source, e.g.,
cosmic rays, or cumulative resistive heating at field-
emitting points of high-current density.?
ACKNOWLEDGMENTS
The writer wishes to thank Dr. E. J. Sternglass, who
suggested the possibility of using the method of this
paper as a test for the photoelectric chain reaction
efficiency, and Dr. R. L. Longini (both of these Labora-
tories) for discussions and criticism which made this
work possible.

7 M. Inghram, University of Chicago (private communication).

JOURNAL OF APPLIED PHYSICS

VOLUME 28,

NUMBER 11 NOVEMBER, 1957

Temperature-Dependent Equations of State of Solids

J. J. GILvARRY
Research Laboratories, Allis-Chalmers Manufacturing Company, Milwaukee, Wisconsin

(Received July 10, 1957)

An isothermal equation of state of a solid is considered, which contains as special cases the equations of
Birch, Murnaghan, Bardeen, and others. The equation is generalized to arbitrary temperature by replacing
two constants of the equation by temperature-dependent parameters, whose functional form is determined
by considerations of thermodynamic consistency. The thermal properties of the solid implied by this equation
of state are examined. It is shown that the generalized equation is consistent with the Mie-Griineisen relation
for the thermal pressure of the lattice, and that the corresponding Griineisen parameter is only slightly
dependent on temperature, in general. The form of the generalized equation of state at low temperature
is exhibited as an explicit function of volume and temperature for a solid whose heat capacity obeys the
Debye law. A comparison with pressure-volume data of Swenson for potassium at low temperatures shows
excellent agreement of the generalized equation of state with experiment.

I. INTRODUCTION

INCE the time of Murnaghan’s successful applica-
tion of the theory of finite strain to obtain equations

of state for solids at high pressure,’® considerable
attention has been devoted to the general problem
he initiated. Additional equations of state have been
derived by later investigators from Murnaghan’s
formulation of the theory of finite strain.*~7 The salient
example is perhaps the equation of Birch,® which has
been used very successfully to represent pressure-
volume relations for solids, at large pressures® and at

1 I, D. Murnaghan, Am. J. Math. 59, 235 (1937).

2. D. Murnaghan, in A pplied Mechanics, Theodore von Kdrmdn
Anniversary Volume (California Institute of Technology, Pasa-
dena, 1941), p. 121.

3T, D. Murnaghan, Finite Deformation of an Llastic Solid
(John Wiley and Sons, Inc., New York, 1951), Chap. 4.

“T. Birch, J. Appl. Phys. 9, 279 (1938).

S I, Birch, Phys. Rev. 71, 809 (1947).

( $ A.) Keane, Nature 172, 117 (1953); Australian J. Phys. 7, 322

1954).

1Y, Shimazu, J. Phys. Earth 2, §5 (1954).

® F. Birch, J. Geophys. Research 57, 227 (1952).

" constant temperatures extending to low values.® The

relation has been used widely in geophysical applica-
tions, for extrapolation of compression data for elements
and compounds beyond the experimental range, and in
the inference of physical properties of the earth’s
interior.8:1911 Murnaghan’s equation has been applied
in a discussion of the effect of shock waves on solids.®

A wider development has proceeded in the derivation
of equations of state of solids from quantum mechanics
and from lattice models. As an example ‘among many
in the former class, one can cite Bardeen’s.equation.’®
In principle, the limitations on accuracy in the quantum-
mechanical calculation of an equation of state are set
only by mathematical complication in the solution of

% C. A. Swenson, Phys. Rev. 99, 423 (1955).
(11051,). Knopoff and R. J. Ufien, J. Geophys. Research 59, 471

954).

1 J, J. Gilvarry, Nature 178, 1249 (1956); J. Atmospheric and
Terrest. Phys. 10, 84 (1957).

2 G, E. Duvall and B. J. Zwolinski, J. Acoust. Soc. Am. 27,
1054 (1953).

15 J, Bardeen, J. Chem. Phys. 6, 372 (1938).
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Schrédinger’s equation for a many-body problem. In
practice, the necessary approximations generally limit
the validity of a result to a particular class of elements
(the alkali metals in the case of Bardeen’s equation).
As a consequence, equations of state derived from
the theory of finite strain generally have the advantage
of applicability to a wider range of elements and
compounds than is possible for those obtained from
quantum mechanics (or from a lattice model). These
statements do not apply, of course, to the range of
extremely high pressure (greater than a limit in the
order of megabars) where use can be made reliably of
the methods of quantum-statistical mechanics,* as
represented by the statistical atom model of Thomas
and Fermi.

In applications of Birch’s equation and others of
similar type, the restriction of validity to isothermal
conditions is a serious shortcoming, since any tempera-
ture correction must be estimated separately. For this
purpose, the Mie-Griineisen equation of state for the
thermal pressure of the lattice,'d or the specific form
of this relation corresponding to the Debye model,!¢
has been used in a number of geophysical discus-
sions.”81917 This method is the one used by Walsh
w\vorkemct o temperature
on Hugoniot curves obtained by measurements on
shock waves in sohds, and thus to obtain lsolhermal
equations of state e‘cpcnmcntally 18,19

The purpose of this paper is to determine by a
thermodynamic argument the modification produced
by variable temperature in a general class of isothermal
equations of state. Special cases include the equations of
Birch and others. The explicitly temperature-dependent
equation of state will be shown consistent with the
Mie-Griineisen relation for the thermal pressure of
the lattice.

II. ISOTHERMAL EQUATIONS OF STATE

Inanother context, the author has given an isothermal
equation of state for a solid, which can be expressed as

P=(n—m)" K[ (Vo/V)*— (Vo/V)™], 1)

where P is the pressure corresponding to the volume
V, Ky is the bulk modulus corresponding to the normal
volume Vy, and » and m are constants.®® The corre-
sponding value of the bulk modulus (incompressibility)

K is
K= (n—m)? K[n(Vo/V)"=m(Vo/V)™], (2)

147, J. Gilvarry, Phys. Rev. 96, 934, 944 (1954).

15 J, C. Slater, Introduclion to Chemical Physics (McGraw-Hill
Book Company, Inc., New York, 1939), pp. 201, 222, 238, 394,
451.

16 C, Kittel, Iutroduction to Solid Slate Plysics (John Wiley
and Sons, Inc New York, 1953), first edition, p. 80.

P E. Vallc Ann, gcoﬁs (Rome) 5, 41 (1952); 8, 189 (1955).

[1s V\)’alsh Rlce McQueen, and anger, Phys. Rev. 108, 196

1957
: 10 Rice, McQueen, and Walsh, in Solid Slate Physics (Academic
Prcss, Inc New York, to be publxshed)

20 % 18 Gzlvarry, Phys Rev. 102, 331 (1956).
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which verifies the identification of K. IFor the purposes |
of this paper, the usefulness of Eq. (1) lies in the fact |
that it can be considered the generic member of a :

wide class of equations of state for solids at constant
temperature.
If one assumes that

n=7/3, m=5/3, 3)

one obtains the Birch equation of state,
P= /DK L(Vo/ V)= (Vo/V)**], 4)
from Eq. (1). This equation was derived by Birch

from Murnaghan’s theory of finite strain, by assuming

merely that the strain energy of an elastic body is
proportional in first order to the square of the strain,
The form (4) presupposes that a multiplicative correc-
tion of the form

—

1—[(Vo/V)H3—1]4- - - (5) ;7

be taken as unity, where £ is a temperature-dependent !

parameter which is small in general. A slightly different

choice of exponents in Eq. (1) yields Bardeen’s equation |

=3K,[(Vo/V)*i= (Vo/ V)], 6

where again a factor of the order of unity has been

——— 3 a—

ignored.”® The original derivation of this equation from |
quantum mechanics applies specifically to the alkali °
metals, but considerations by Gombas suggest the |

possibility of a wider application in the case of metals?
The choice m=0 yields the equation of state

P=uK [ (Vo/V)"—1] )

obtained by Murnaghan® from the “integrated linear
theory of finite strain.” Murnaghan introduced the
constant »# empirically into the theory, and chose its

value in special cases by a fit to the experimental data. |

The author has shown that this quantity can be
interpreted physically as

n=2yn+13, (8)

where v4 is an average value of the Griineisen parameter
v of the solid over the range of interest on its P—} |
diagram.®? If the Griineisen parameter shows only
small variation over the range in question, which is |

true in general for a relatively incompressible solid,

v in Eq. (8) can be replaced by the value v correspond-

ing to the initial volume.?® The special case of Eq. (7)
for a vanishing value of the Griineisen constant is

=3K[(Vo/V)}-1], )

which is the form derived by Murnaghan irom the
linear theory of finite strain.?
The general form (1) includes also the equations of

2P, Gombas, Die Statistische Theoric des Atoms wund ilre
Anwendungen (bprmgcr-Vcrlag, Vienna, 1949), pp. 299-337.

22 T, J, Gilvarry, Phys. Rev. 102, 325 (1956).

% J, J. Gilvarry, Phys. Rev. 104, 908 (1956).
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EQUATIONS OF STATE OF SOLIDS

Griineisen,* Born,* and Fiirth®* corresponding to the
Mie form for the potential energy U of an atom in
the interatomic force field, given by

U= —A /P04 B/, (10)

where 7 is the interatomic distance, and 4 and B are -

cither interaction constants or lattice sums. In this
case, the constants # and m are chosen either from
theoretical considerations (e.g., to correspond to a
Lennard-Jones potential) or from the requirement of
a fit to thermodynamic parameters (such as the lattice
energy) of the solid at normal pressure. To a large
extent, these equations of state from lattice models
have been supplanted for applications at high pressure
by the forms discussed previously. 4

Some discussion of the relative merits of these
various special forms of Eq. (1) is in order. Because of
the "generality of the underlying assumptions, one
might expect Birch’s equation of state to have a

. wide range of applicability, and such appears to be the
. case. The equation in the form (4) scems to reproduce

the majority of Bridgman’s experimental data on the
isothermal equations of state of inorganic solids,
within about the experimental uncertainty® (exclusive
of the occurrence of polymorphic phase transitions).
In the case of the highly compressible alkali metals,
for example, this statement appears true for normal
temperature up to the limit of Bridgman’s pressure
measurements (about 10% bars, where, in the case of
potassium, the fractional compression is about 3%).
The fact that it contains only one disposable parameter,
and fits such a wide range of data, makes Eq. (4)
extremely useful. )

On the other hand, use of Birch’s equation entails
some minor drawbacks at the lower pressures. For
sufficiently low pressure, the equation of state of any
solid can be described by the Bridgman equation

—(V=V4)/Ve=aP—bP? (11)
where a(=K¢') and b are constants.!® By means of
the Lorentz-Slater relation!®#

=—1(0 InK/d InV)p—1% (12)

for the Griineisen constant as evaluated from compres-
sibility parameters at fixed temperature 7', one can
obtain this constant for the solid at zero pressure as

(13)

from the Bridgman equation. However, the Lorentz-
Slater relation yields

7=b/a’2_?2i:

v=3(ntm—3), (14)

% E. Griineisen in Handbuch der Physik (Verlag Julius Springer,
Berlin, 1926), Vol. 10, pp. 1-59.

% M. Born, J. Chem. Phys. 7, 591 (1939). The equation of
state contains a temperature-dependent term which can be
omitted for purposes of the present discussion.

2 R, Fiirth, Proc. Roy. Soc. (London) A183, 87 (1944). The
equation of state contains a temperature-dependent term which
can be omitted for purposes of the present discussion,
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from Eq. (1), which corresponds to ¥y=11/6 for the
Birch equation. Unless the Griineisen constant of the
solid in question has this particular value, which
corresponds to 2b/a*=35 from* Eq. (13), the Birch
equation fails to yield the correct curvature of the
P—V curve at zero pressure. For the alkali metals,
specifically, the Birch values for the Griineisen constant
and the parameter 2b/a* seem definitely high, and the
constant values from Bardeen’s equation of 4/3 and
4, respectively, are closer to corresponding averages
over these metals obtained by means of Griineisen’s
law.2® On the other hand, it can be noted that the
average value of the Griineisen constant over most
solids has closely the Birch value, since Slater? has
estimated the average value of the ratio 2b/a* over
most materials as 5. Finally, one can observe that the
modified Murnaghan equation, with » evaluated in
terms of v by Eq. (8), can be reduced exactly to the
Bridgman equation by means of Eq. (13) when the
pressure is small. Thus, the equation of Murnaghan as
modified by the author is capable of yielding identically
the correct curvature of the P—V curve of a solid
at zero pressure.

One sees that the equations of Birch, of Murnaghan,
and of Bardeen are subsumed under the general
equation of state represented by Eq. (1). Various
equations (or special cases thereof) treated by Gombas
fall into the general class of Eq. (1) also.* The tempera-
ture dependence of all these special forms can be
obtained by determining the proper temperature
dependence of Eq. (1).

III. GENERAL TEMPERATURE-DEPENDENT
EQUATION

The special forms of Eq. (1) which have been
discussed yield reasonable approximations to the
pressure at fixed temperature, when the constants K,
and V, correspond to the temperature in question.
For all these forms, it is consistent with experimental
results to assume that the exponents # and = are
constants, and that the entire volume dependence of
the pressure is contained in the powers V=" and V-
appearing. The former assumption for the case of
Murnaghan’s equation will be examined in Sec. IV.
To generalize Eq. (1) to arbitrary temperature, it
will be postulated that the constants V, and K, are
replaced by parameters U and &, respectively, which
are functions only of temperature (aside from depend-
ence on constants fixed by an initial state).® The
generalization of Eq. (1) becomes

P= (n—m)? %[ (0/V)"— (0/V)"], (13)
and that of Eq. (2) is
K= (n—m)K[n(0/V)"—m(0/V)"]. (16)

27 Birch has shown (reference 4) that the value 26/a%=35 follows
directly from certain approximations in the theory of finite strain.

2 T, J. Gilvarry, J. Chem. Phys. 23, 1925 (1955).

# J. C. Slater, Phys. Rev. 57, 744 (1940).
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The temperature dependence of U and X will be
determined by considerations of thermodymamic con-
sistency; dependence solely on temperature will be
verified a posteriori.

Any valid equation of state, applicable for variable
absolute temperature 7', must conform to the thermo-
dynamic identity ,
(0P/3T)y=Ka, (17)

where K=—V(9P/dV)r is the isothermal bulk
modulus, and a=V-1(0V/dT)p is the volumetric
coeflicient of thermal expansion. Also, the equation
must obey the relation

(0K/3T)y=K'a+K*(0a/dP)z, (18)

obtained by differentiation of Eq. (17), where
K'=—V(K/oV)r. (19)
Itis convenient to define a dimensionless parameter by
n=—Ka " (da/0P)r, (20)

which ranges, numerically, from about 2 to perhaps 12
for different solids.® By virtue of the identity

K-1(0K/8T)p=K (3a/3P)r, (21)
one can write Eq. (18) as
(3K /8T)v=(K'— Kn)e. (22)

The general forms (15) and (16) will be required to
meet the conditions of the two identities (17) and (22).
This procedure corresponds to requiring that

=—(dF/dV)r,
where 7 is the Helmholtz function, rather than
' P=—dE/dV,

where Z is the energy; note that (92/9T)y in Eq. (17)
equals (8.S/dV)r, where S is the entropy.

On the assumptions made, differentiation of Egs.
(15) and (16) with respect to temperature to obtain
(6P/3T)v and (0K/dT)y, respectively, and substitution
of the results into Egs. (17) and (22) yield two linear
algebraic equations in 9 InU/d7T and 9 InX/dT, whose
solutions are

9 InV/dT=a[ K2+ P(Kn—K')]/(K*— PK’), (23a)
3 Ink /9T = —naK?/ (K*— PK"). (23b)

One notes that these equations imply that U and
X cannot depend solely on the temperature, as pre-
supposed by the derivation [in the first instance,
in the volume differentiation to obtain K of Eq.
(16)]. It will be shown that, actually, U and & are
cach a function only of temperature, to a certain
approximation.

For most solids, P is considerably smaller than X
up to relatively high pressures, although X and K’ are
comparable, in general. By means of the binomial

GILVARRY

theorem, one can write Eq. (23a) to first order in the
ratio P/K as

0 InV/0T=a(14+7P/K). (24)

Now, Birch has shown that the pressure dependence of
a(T) at fixed temperature T is given approximately bys

a=ao(1—770P/K), (25)

where ao(7) is the value of a at zero pressure and at
temperature 7', and 7¢(7) is the corresponding value
of ». This equation is simply an approximate integral
of the differential relation (20), but it agrees fairly
well with Bridgman’s experimental results on the
change of thermal expansion (over the range 0-95°C)
of the alkali metals with pressure up to the limit of
measurement?® (about 2X10* bars). Hence, to first
order in the ratio /K, Eq. (24) becomes

dInV/dT=ay(T), (26)

where the right-hand side is a function of the tempera.
ture alone. The integral of this relation is

T
V=Voexp | audT, 1)

]

where ¥V, is the initial volume corresponding to the
temperature 7 and zero pressure.
By a binomial expansion, Eq. (23b) can be expressed
as
dInx/0T= —na(1+K'P/K*?) (28)

to first order in P/K. The partial derivative of 5 with
respect to pressure at constant temperature can be
obtained as

72(3n/0P)r= (Kn+K')/K*— (K /na)(6°a/0P*)r, (29)

from the definition (20). In this equation, the second
derivative appearing can be neglected consistently with
the approximation (25) of Birch. In this case, use of
Birch’s result (25) and the analogous approximate
integral of Eq. (29) yields

9 InX /0T = —noao(1+2K'P/K?), (30)

from Eq. (28). One can reduce this relation approxi-
mately to

dInx/0T= —noa [ 1+2(n+m)P/K] (31)

for P small, by replacing the ratio X’/K by its limiting
value #+m for normal volume, as obtained from
Eq. (2). In contrast to the case with U, it is seen that
& can be dependent solely on temperature and the
assumptions thus self-consistent, only in the limit
PKK. Presupposing this limit, one can restrict the
right-hand side of Eq. (31) to its leading term, and
one obtains

7
K=K, exp[—f noaodT], (32)
T

0
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EQUATIONS OF STATE OF SOLIDS

where no and ao correspond to temperature 7 and
pressure zero, and K is the bulk modulus at tempera-
ture T and at zero pressure.

Accordingly, Eqs. (27) and (32) yield for Eq. (1)
the generalization

Ko

T
exp[—f ﬂoaodT]
n—m To
()
- exp 't‘oa

VO T - m
—(— exp aodT) ], (33)
14 To
which exhibits the temperature dependence explicitly

and reduces to Eq. (1) when the exponentials appearing
are set equal to unity. This equation yields

(0P/dT)y=Kao— Pnoao=Ka(T) (34)

directly, which shows that ao(7) must be taken as
strictly independent of pressure; the pressure depend-
ence of the thermal expansion demanded by Eq. (25)
is taken into account by the exponential in P which
involves nos. One concludes from Eq. (26) that the
generalization (33) yields correctly the temperature
dependence of the pressure through terms of first
order in P/K as a parameter of smallness, but, from
Eq. (31), that the temperature dependence of the bulk

. modulus is given correctly only to zero order in this

e et A WS,

parameter. Note that the role of the exponential
involving neae in Eq. (33) is to ensure that Eq. (17)
be fulfilled at nonvanishing pressure; if this exponential
be set equal to unity while the exponential involving
only ao be retained, Eq. (17) is met only to zero order
in the parameter P/K. Finally, the physical interpreta-
tions of the parameters U and & can be noted. From
Eq. (27) and the definition of ay, it follows that V(7))
is simply the volume of the solid at temperature T’
and at zero pressure. Equations (20) and (21) yield

na=—K"(3K/oT)p, (35)

and hence &(7) of Eq. (32) is the bulk modulus of
the solid at temperature 7" and at zero pressure.

To this point, it has been assumed tacitly that
states of the solid at zero pressure are observable at
arbitrary temperature, since the coefficient aq of volume
expansion must be determined experimentally. This
condition is not met for a solid with a normal fusion
curve, when the temperature exceeds the normal
melting temperature. In this case, Birch’s relation
(25) must be replaced by

a=an{1l=nu[ (P/K)—= (Pun/Kn)]}, (36)

where Pn(T) is the pressure, K.(T) is the bulk
modulus, and ax(7) and n.(T) represent values of

- aand , respectively, all of which are measured for the
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solid on the fusion curve at a given temperature T
(and thus can be regarded as functions only of tempera-
ture). With this value of a, Eqs. (24) and (28) yield

T P"‘
U=V,,._oexpf (1-{—77,,.—-)0:,,.(17‘,
T, 0 Km

T

(37a)

Py,
K=Kmo exp[— (l-i-r;m;)nmade], (37b)

Tm, 0

respectively, where Vmo and K, o are the values of
V and K, respectively, for the solid at the temperature
Tmo for fusion under zero pressure; the paths of
integration are along the fusion curve. The correspond-
ing generalized equation of state is to be applied only
for P(T)>Pn(T). These forms for VU and & can be
reduced to those of Eqgs. (27) and (32) by writing

aO:am(1+77ﬂvPM/KM)s (38)

from Eq. (36), so that ao(7) is the hypothetical value
of « possessed by the solid if metastable below its
fusion temperature at P=0. Substituting into Egs.
(37) the values of am and 7, implied by Egs. (38),
one can write

0= "Nm,

T
V="V pm,o0exp awdT, (39a)
Tm, 0
T
K=Km,o exp[ — f noaodT], (39b)
Tm, 0

where the paths of integration correspond to zero
pressure. Hence, U and X retain their physical interpre-
tations as the volume and bulk modulus, respectively,
of the solid at zero pressure for temperature 7.

In the preceding, the parameters U and X have been
written in exponential form for mathematical con-
venience. Only rarely does the accuracy with which
ao and 7o are experimentally known justify retention
of terms beyond the first in the expansion of the
exponential. To first order, P(7T) of Eq. (33) can be
written as the sum of a temperature-dependent correc-
tion and the pressure P(7) corresponding to the
isothermal equation as

Ky
P=P(To)+ {nyr—my™—no(y"—y™)]
n—im r
X | awdT, (40)
T

where y=Vo/V (no has been taken as a constant). At
nonvanishing pressure, the first two terms in the
brackets in this equation are dominant over the terms
in parentheses with 7o as coefficient, since the latter
terms cancel for V="V, The relative smallness of the
terms involving 7o is advantageous, since this param-
eter is difficult to determine experimentally and
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relatively accurate values are available in few cases.
Griineisen® and Birch® provide tables of n for elements
and some compounds.

As noted, the parameter ¢ of the multiplicative
correction (5) to the Birch equation as expressed in
the form (4), has a value quite close to zero for very
many (if not most) elements and compounds. When
& does not vanish but is independent of temperature,
it is clear from the derivation that the generalized
relation (13) is valid within the approximations made,

when multiplied by the correction factor (5). However, -

the experimental results of Swenson® for the alkali
metals at low temperature show that ¢ depends on

temperature when it does not vanish for these elements. -

But whether & depends on temperature or not, one
notes that the generalized relation (15), when multiplied
by the correction factor (5), reduces at any fixed
temperature precisely to the general form of the iso-
thermal Birch equation, because of the physical
significance of the parameters U and &. Thus, no reason
seems to exist why the generalized Birch equation
should not be reliable for arbitrary temperature when
the factor (3) is included and ¢ depends on temperature.
This statement should be true within the approxima-
tions entailed in Birch’s derivation of the isothermal
form, and implies that the difficulty raised by Eq. (31)
in representing correctly the temperature dependence of
K is a shortcoming of Birch’s equation in the form (4),
and not of the analysis employed here.

IV. THERMAL PROPERTIES OF THE SOLID

In this section, the salient thermal properties of the
solid will be examined, as implied by the generalized
equation of state. Inasmuch as £=0 for the majority
of solids, the discussion will be restricted to this case
for simplicity.

In the Mie-Griineisen theory of the thermal pressure
of a lattice, the total pressure P is expressed in terms of
a volume-dependent pressure p and a thermal compo-
nent Pr of pressure, by!4:1¢

P=p+Pr. (1)

If the volume variation of all lattice frequencies »; is
the same, so that the Griineisen parameter vy can be
defined by

v=—(0 Inv;/d InV)r, (42)
the basic result of the theory is
P T=’)'ET/ V, (43)

where Er is the thermal energy of the lattice.!®*® One

obtains
P JPr C v a‘Y ET
(), ) %
aT v aT v 14 oT v 14
directly, where Cy is the heat capacity of the solid at
constant volume. The generalization (15) has been
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required to meet Eq. (17) through terms of first
order in P/K. To this order, therefore, for a solid to
which the Mie-Griineisen theory is applicable, the
generalized equation of state satisfies

Ka=~Cy/V+(9v/0T)vEr/V,

which represents Griineisen’s law.

The usual statement of Griineisen’s law differs from
Eq. (45) by omission of the term involving (9v/97)y,
in conformity with Griineisen’s postulate that the
lattice frequencies are a function only of the volume.18:4
When this hypothesis is not satisfied, the general form
(45) follows from the fundamental result (43). By use
of the Lorentz-Slater formula (12), one obtains

1 n?2(0/ V) —m2(V/V)™ 1
¢ e - (46)
2 n(0/V)r—m(0/V)™ 6

as the Griineisen parameter corresponding to the
generalization (15) of the isothermal equation of state.
In general, this expression for ¢ depends on the tempera-
ture through the parameter U (although it does not
involve &). However, it has been noted that V="V for
zero pressure. Hence, Eq. (46) yields the result that
v at any temperature has the strictly constant value
given by Eq. (14), if the pressure is zero. In this case,
the last term in the form (45) of Gruneisen’s law
vanishes. Therefore, Griineisen’s postulate is satisfied
for zero pressure.

To discuss the temperature dependence of v for
nonvanishing pressure, it is convenient to make use
of the volume v possessed by the solid at zero tempera-
ture, rather than the actual volume V. These two
quantities are related to each other at the same pressure

by

(43)

T
V=uvexp f adT. (47)
0

The bulk modulus K will be written in a form corre-
sponding to Eq. (41), as

K=k+Ky, (48)

where £ (like p in this case) depends only on v, and
Kr (like Pr) is a temperature-dependent component.
If the exponentials in Eqgs. (27) and (32) are expanded
to first order, and Birch’s approximation (25) is used,
v of Eq. (46) can be written to first order as

dvo 7 ?
‘Y=’Yo“[ f noaodT]—, (49)
d Inv/y k
e 1 2 (uu/3)"— i o/
12 (vo/v)*—m?(vo/v)™ 1
=- (30)
2 n(vo/v)*—m(ve/)™ 6
and
dve 1 nm(n—m)*(vg/v)"tm
(31)

d lnv=5 [#(vo/v)"—m(ve/v) ™
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depend only on the ratio of v to its value v, at zero
pressure. It follows that v at low pressure is a function
only of » to the extent that the temperature-dependent
term in Eq. (49), which is proportional to the ratio
p/k, can be neglected. Accordingly, the prescription of
Eq. (15) for including the effect of temperature on the
pressure should yield approximately the same results
in practice as the method of Walsh and associates,!8:1?
who use the Mie-Griineisen relation (43) directly, on
the assumption that the Griineisen parameter is a
function only of the volume v. It follows also that the
approximate constancy assumed for the Murnaghan
exponent z of Eq. (8) represents a consistent assumption
for P small.

The equation of state as an explicit function of volume
and temperature can be found from Eq. (15) for a
solid obeying the Debye theory at sufficiently low
temperature. In this case, Cv and Er vary with
temperature as 7° and 7% respectively, and thus the
last term can be ignored in Eq. (45), which reduces to
the usual form of Griineisen’s law. Hence, the tempera-
ture dependence of the coefficient a of thermal expansion
becomes the same as that of the heat capacity Cv,
when one neglects the small temperature dependence
of the Griineisen parameter, the bulk modulus, and
the volume (under isobaric conditions) specified by
Egs. (49), (48), and (47), respectively. The Debye
expression for the heat capacity is -

Cy=(127*/5)NR(T/0©)3 (52)
where R is the gas constant, N is the number of moles
in the solid, and © (proportional to the maximum
lattice frequency and thus a function of volume) is
the Debye temperature in the limit of zero tempera-
ture.!® Griineisen’s law yields

“a= (1274/5)NR (vo/kv) (T/0)3, (53
where v, is given by Eq. (50). Expressing the pressure
differentiation in the definition (20) of 7 in terms of
one with respect to the volume v, one obtains

7="5v0—2+d Invy,/d Inv (54)
by using Eqs. (42) and (53); the derivative appearing
corresponds to that of Eq. (51). Hence, for a Debye solid
at low temperature, the parameters U and & can be
written through first-order terms in the exponentials
involved, as

V= 1)0[1 + (31!’4/5)1\7R (‘Yo/ko'ﬂo) T‘V@os], (553.)
2 3dlnyoy /7o T*

3€=k0[1—1r‘NR(3‘yo——+— ) ( — —], (55b)
5 5 dInv ko'l)o @03

where k; and O, represent values of %2 and ©, respec-
tively, evaluated at v=1,, to which point v, and the
derivative appearing also correspond. The value of vo
is given by Eq. (14), and the value of the derivative
follows as

d Inyo/d Inv=nm(n+m—3%)7, (56)

from Eq. (51). Substitution of the results of Egs. (55)
into Eq. (15) yields the explicitly temperature-depend-
ent equation of state. It is seen that the thermal
component Pz of pressure varies as 7™ in this limit.
The results obtained can be applied to the case of an
ideal harmonic solid which, because of the absence of
anharmonicity of the lattice vibrations, shows no
thermal pressure and no thermal expansion. In this
case, the lattice frequencies are strict constants, so
that the Griineisen constant v vanishes. It is clear from
Eq. (46) or Eq. (51) that v can be constant only if at
least one of the exponents # and s vanishes. Selecting
m=0, one obtains y=%(n—%), which vanishes only
for n=1. In the general case, VU and & of Egs. (27)
and (32) can be independent of the temperature only
for ap equal to zero, and this value of @, follows from
Griineisen’s law (45) when y vanishes. For the Debye
model, Egs. (55) show that U and X reduce to voand ko,
respectively, for vo equal to zero. Hence, the entire
development is consistent with the expression

P=3ko[(‘vo/'l))§—1] (57)

for the equation of state of an ideal harmonic solid, as
established previously by the author for this case.?
This equation corresponds to Eq. (9), derived by
Murnaghan from the linear theory of finite strain.

As noted, the generalized equation of state predicts
that the Griineisen parameter should be independent
of temperature at zero pressure. On this point, direct
evidence from experimental data for temperatures
higher than normal is available from values of ¥
computed by Birch for compounds® and by the author
for elements.® The results of the author show no more
than a small or moderate decrease, in general, of the
parameter over the range of temperature from normal
to the fusion point; the decrease might be interpreted
as a consequence of anharmonicity, since the tempera-
tures involved exceed the Debye temperature, in
general. For low temperature, the experimental
evidence is conflicting. In this case, Bijl and Pullan
found an anomalously large decrease relative to its
normal value in the parameter for copper,® but I'iggins
et al. observed an increase for aluminum.** However,
Baluffi and Simmons recently have reported measure-
ments of the thermal expansion of copper from 102°
down to 8°K, and have concluded that no evidence
exists for a real variation of v in this temperature
range.® Their results are in agreement with those of
Rubin e al.* for temperatures down to about 110°K.
These considerations tend to justify the assumption that
the exponent % of Murnaghan’s Eq. (7) with » evaluated

% T, J. Gilvarry, Phys. Rev. 102, 308 (1956).
3 D, Bijl and H. Pullan, Physica 21, 285 (1955). .
@ Figgins, Jones, and Riley, Phil. Mag. 1, 747 (1956).
@ R, W. Baluffi and R. O. Simmons, Bull. Am. Phys. Soc. Ser.
11, 2, 137 (1957).
( % R)ubin, Altman, and Johnston, J. Am. Chem. Soc. 76, 5289
1954).
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from Eq. (8) in terms of ya or v, is at least approxi-
mately independent of volume and temperature.

One notes that Eq. (51) predicts a positive value of
dyo/dInv. On the basis of the Lindemann law, the
author has shown that the curvature of the fusion curve
can be normal in the sense of Bridgman only if y—3
~+dv/d InV is positive for the solid at fusion®; the sign
of the derivative implied by Eq. (51) thus is consistent
with this result. In a comparison with experiment of
a form of Simon’s semiempirical fusion equation
obtained theoretically, the author has determined
values of dln(y—3%)/dInV for the alkali metals.®
The values are positive, consistently with Eq. (51),
and are of the order implied by Eq. (56) for # and m
chosen to correspond to the Birch equation.

It can be noted that the generalized equation of state
obtained is concordant with, but is not restricted by,
the validity of Griineisen’s law. This conclusion follows
from the fact that the basic relation (17), to which the
generalized equation of state conforms, is a thermo-
dynamic identity independent of a model. For a metal
at sufficiently low temperature, Griineisen’s law fails
in the sense that the Griineisen parameter requires a
correction for the contribution of the electrons to the
thermal pressure®; for a similar reason, the law is
generally not valid for a superconductor. In neither
case should the generalization to arbitrary temperature
involved in Eq. (15) fail to be applicable within the
approximations made, if the form (4) is valid under
isothermal conditions.

V. COMPARISON WITH EXPERIMENTAL DATA

Results of Swenson?® for the compression of the alkali
metals at two temperatures (77 and 4.2°K) can be
used to compare predictions of the generalized Birch
equation with experiment. The element potassium will
be chosen for the check, since the corresponding values
of the parameter ¢ of the correction factor (5) vanish at
both temperatures.

Swenson expresses his results for the pressure as a
function of compression by tabulating values of the
density and the compressibility K¢ at zero pressure
for the two temperatures in question, which fix the
constants Vo (for unit mass) and K, of the isothermal
Birch equation as fitted to his data. The values of
the latter pair of constants corresponding to the former
are shown in the first two columns of Table I, for

TABLE 1. Parameters of the generalized Birch equation of state
for potassium, from data of Swenson.

T Vo Ko a 70a0
L4 cmi/g 104 atmos “C) (°C) n9
77 1.09, 3.38
0.00015 0.0003; 2.4
4.2 1.08: 3.47

% S, Visvanathan, Phys. Rev. 81, 626 (1951); J. J. Gilvarry,
Phys. Rev. 102, 317 (1956).
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potassium at the two temperatures. On Swenson’s
definitions, Vo and Ko depend on the temperature;
hence Vo and K represent values of U and X, respee-
tively, in the notation of this paper. The pressure for
potassium is shown in Iig. 1 as a function of the
relative compression (V—V)/U for the two tempera-
tures, as computed from the isothermal Birch equation
with constants from Table I.

The values of the parameters ao, 70, and 7y for
potassium are shown in the last three columns of
Table I, as implied by the constants in the first two
columns. Since these determinations correspond directly
to the data of Swenson, it is clear that values at the
two temperatures of ‘U and & from Egs. (27) and (32),
respectively, merely reproduce the values of V¥, and
K, in the first two columns of Table I. Thus, a sub-
stantive check of the generalized Birch equation cannot

10000 | [

1
ODATA OF SWENSON,T=4.2°K
0 DATA FROM GENERALIZED
BIRCH EQUATION, T =77°K

7500

ISOTHERMAL BIRCH

EQUATION, T = 4.2°K
T= 77'KW

P (ATMOSPHERES)
v

2500 7

o Qo6

012 aie
RELATIVE COMPRESSION (L-V)/ U

F1G. 1. Pressure as a function of the relative compression for
potassium, as computed from the isothermal Birch equation with
data from Table I, for comparison with data points at 77°K
predicted by the generalized Birch equation from values at 4.2°K.

be obtained directly, since its form with parameters
evaluated numerically for one of the two temperatures
is simply the isothermal form with constants equal to
those of Swenson.

However, Swenson tabulates smoothed experimental
data for potassium at one temperature, 4.2°K. An
independent check of the generalized Birch equation can
be obtained by using it to predict pressures at 77°K
from the tabular values for 4.2°K, given as a function
of (Vo—=V)/Vi[=(0—V)/V]. For a fixed value of
the last quantity, Eq. (15) states that P(7) is given in
terms of P(T) by

P(T)=[1—nwe(T—T0)JP(T). (38)

Use of this equation with values of parameters from
Table I to predict pressures at 77°K from those at
4.2°K yields excellent agreement with results from the

e —— | p—

|

|

isothermal Bi
shown in Figl:
points from S
up to 3%) wi
corresponding
Agreement inj
lower pressur|
in Fig. 1 for J
reverses wheri
The degree,
clearly by Fi
(0~ )/, 4
pressures at 4
data for 4.2°
from the iso
values of pa
for two valué

percent at |
|

300 —

T

n
8
|

;
|

P (4.2°K) - P (77°K) (ATMOSPHERES)
3 g

Fic. 2. Difi
4.2 and at 77°%
from Swenson|
Birch equation:
isothermal Bir¢

comparison ‘
Swenson’s d|
Birch equati

It is cled
results that
used directly
correspondir.
isothermal €
case of ﬁxed;




‘wenson’s
oerature;
, re -
SSur

21 of the
gtempe.ra-
equation

er 70 for
umns of
first two
| directly
ss at the

ind (32),

J Vo and
5, a sub-
0 cannot

|
|

|

 ©

‘ession for
\tion with
at 77°K
at 4.2°K.
)
rameters
eratures

2qual to

-imental
°K. An
tion can
at 77°K
L .

.unction
value of
given in

- (9)

'rs from
lhose at
ﬁ'om the

C.

e e O e e e A s e e e e et
—

e

EQUATIONS OF STATE OF SOLIDS

jsothermal Birch equation at the higher pressures, as
shown in Fig. 1. At the intermediate pressures, data
points from Swenson’s tabulation are high (by amounts
up to 3%) with respect to the associated Birch curve;
correspondingly, values from Eq. (58) are high also.
Agreement improves for data points (not shown) at the
lower pressures. Consistently with Eq. (58), the curve
in Fig. 1 for 77°K lies below that for 4.2°K; this order
reverses when 2 is plotted against V' directly.

The degree of agreement obtained is exhibited more
clearly by Tig. 2, which shows, for a given value of
(V—=V)/V, the difference P(4.2°K)—P(77°K) of the
pressures at 4.2 and 77°K as computed from Swenson’s
data for 4.2°K by use of Eq. (58), and as determined
from the isothermal Birch equation with Swenson’s
values of parameters. The difference found vanishes
for two values of the abscissa, and is less than three
percent at the highest datum point shown. This

300

T T T
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GENERALIZED BIRCH EQUATION

/
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¥ /
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~
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Fic. 2. Difference P(4.2°K)—P(77°K) of the pressures at
4.2 and at 77°K for a given relative compression, as computed
from Swenson’s data for 4.2°K by means of the generalized
Birch equation, for comparison with values determined from the
isothermal Birch equation with parameter values from Table I.

comparison is unaffected by the degree to which
Swenson’s data for 4.2°K are fitted by the isothermal
Birch equation.

VI. CONCLUSION

It is clear from the comparison with Swenson’s
results that the generalized Birch equation can be
used directly to fit experimental pressure-volume data
corresponding to a range of temperature, as the
isothermal equation has been used in the past for the
case of fixed temperature.
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For the range of high pressures greater than a limit
in the order of megabars, the effect of shock waves on
solids has been treated theoretically on the basis of a
temperature-dependent equation of state from the
statistical atom model.3® This equation of state loses
validity for the lower pressures, where it must be
supplemented by a relation appropriate to this pressure
range.”? Use of the generalized Birch equation for this
purpose permits an analysis at the lower pressures on
lines analogous to those followed in the casc of the
Thomas-Fermi cquation of state.” The problem in
question is of interest in connection with the explosive
impact of meteorites and the associated crater pro-
duction.

The generalized Birch equation has an obvious
application in studies of the earth’s internal constitu-

tion, since it should be applicable at the pressures of

the mantle, where one cannot use reliably an equation
of state from the statistical atom model, as is possible
(within an approximation) for the higher pressures of
the core. Birch has used his equation of state to estimate
the density in the earth’s core, by extrapolation of
experimental data of Bridgman, on the assumption
that the core is iron.® His result for the central density
is about 209, higher than Bullen’s value deduced from
seismological data.®® Of this discrepancy, Birch
estimates that perhaps half may be due to the neglected
effect of temperature. The generalized Birch equation
may be of use in further study of this point.
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Nole added in proof.—It has been verified that the
generalized relation (15), with the multiplicative cor-
rection factor (S) included for a given temperature,
fits the data of Swenson® for the alkali metals other
than potassium. In this reference, the values of AV/V,
tabulated for cesium are incorrect because of a trans-
cription error, although the corresponding contants
given for the isothermal Birch equation are correct, as
the author has been informed by Dr. Swenson.

3 J. J. Gilvarry and J. E. Hill, Publ. Astron. Soc. Pacific 68,
223 (1956) ; Astrophys. J. 124, 610 (1956).

3 7. J. Gilvarry, J. Appl. Phys. 27, 1467 (1956).

# K. E. Bullen, Monthly Notices Roy. Astron. Soc. Geophys.
Suppl. 6, 50 (1950).
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